- The meeting is being recorded
- Please mute your microphone
- Please use the chat function for questions
 - The chat will be monitored, and questions read to the presenters
 - Questions not pertinent to a specific presentation will be saved to the end of the meeting

Eloy and Maricopa-Stanfield Basin Study

Eloy And Maricopa-Stanfield Basin Study

Stakeholder Meeting

Friday May 20, 2022, 9:00 AM – 10:30 AM

Welcome and Introductions

 Mayor Craig McFarland, City of Casa Grande and Pinal Partnership Board of Directors

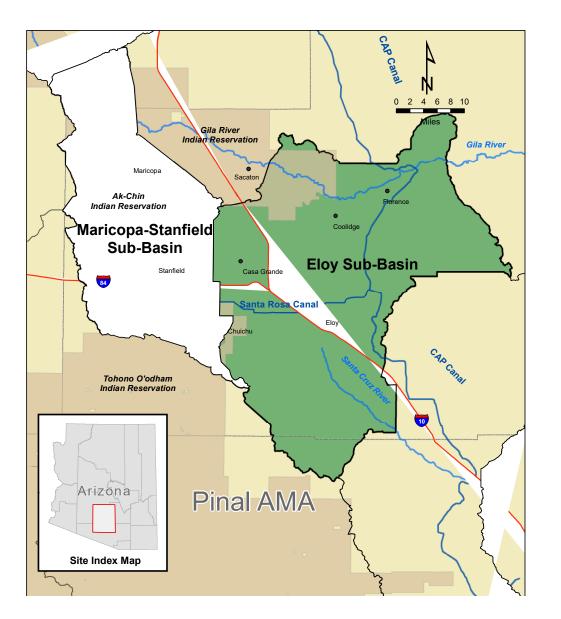
- Welcome and Key Introductions
- Basin Study Summary
- Tasks worked on during the past year
- On-going Tasks
- Timeline and Budget Update
- Future Grant Opportunities
- Questions/Discussion
- Future Upcoming Meeting(s)
- Closing Remarks

Eloy and Maricopa-Stanfield Basin Study

Eloy and Maricopa-Stanfield (EMS) Basin Study

Primary Goal:

Help water managers plan for uncertain future in water resources



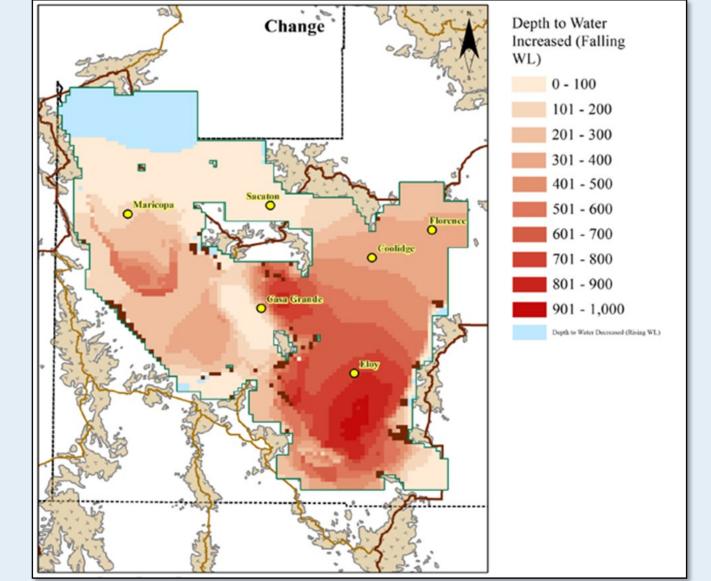
Central Arizona Project Canal near Florence

EMS Basin Study – Study Area

- Located south of Phoenix metropolitan area in Pinal County
- Study area: 1575 sq. mi.
- Pinal Active Management Area (AMA) as defined by Arizona Department of Water Resources (ADWR)
- Water demand has historically been dominated by agriculture sector
- Agriculture and agribusiness contributes \$1.1 billion to local economy

Pinal County Major Attributes

- Agriculture sector
- Rapid growth


Projected Long-Term Problem

Projected Deficit:

8.1 million acre feet

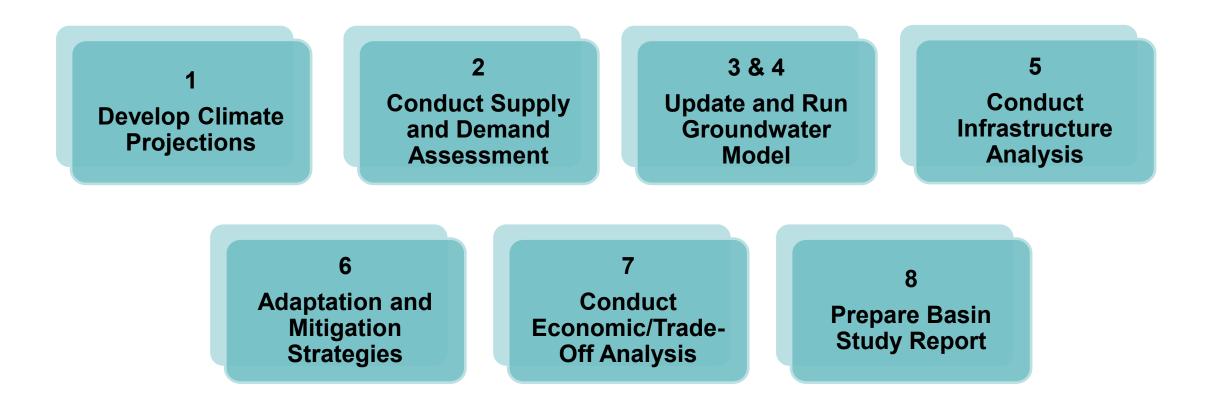
"Looking out 100 years, there is insufficient groundwater in the Pinal Active Management Area to support all existing uses and issued assured water supply determinations."

ADWR Presentation to the House Ad Hoc Committee on Groundwater Supply in Pinal County, October 11, 2019

Projected aquifer change over 100-years adapted from ADWR

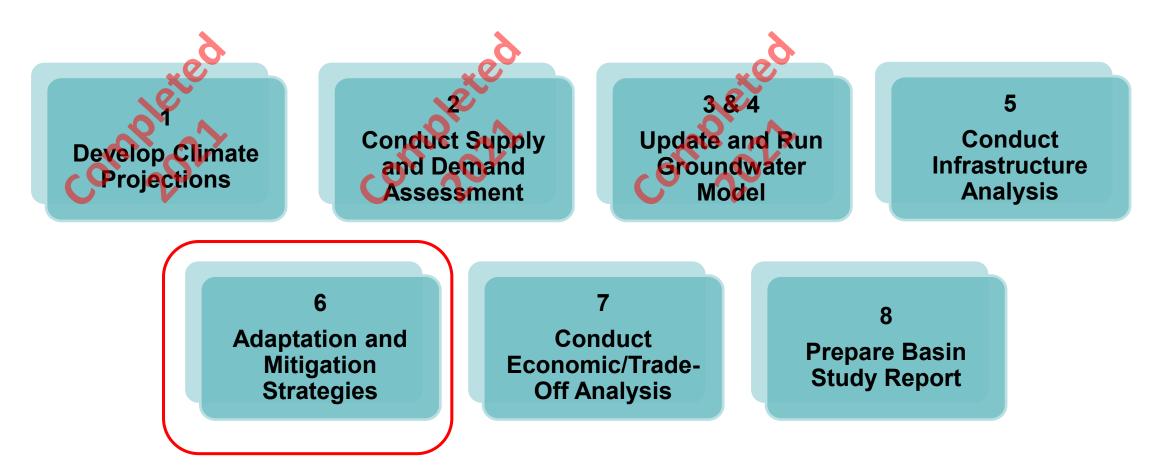
EMS Basin Study

- Study began in November 2018
- 4¹/₂ year study
- Budget of \$1,860,000
- Planning period though 2060



Basin Study Update

- First meeting Kickoff November 2018
- Annual Meetings: January 2020 and April 2021
- Tasks Worked on Since Last Annual Meeting
 - Adaptation and Mitigation Workshop
 - Groundwater Model with Adaptation and Mitigation strategies
 - Trade-Off Analysis
 - Infrastructure



Basin Study Tasks

Basin Study Tasks

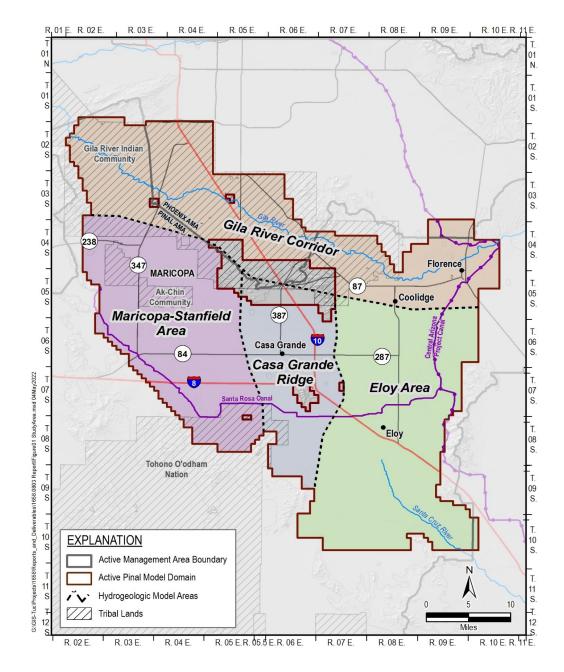
Adaptation and Mitigation Strategies Workshop

- Facilitated Brainstorming session held on May 17 and 18, 2021
- Roughly 40 Stakeholders representing federal, county, city and tribal agencies alongside agriculture and other interested parties participated
- Participants put in virtual breakout rooms to brainstorm

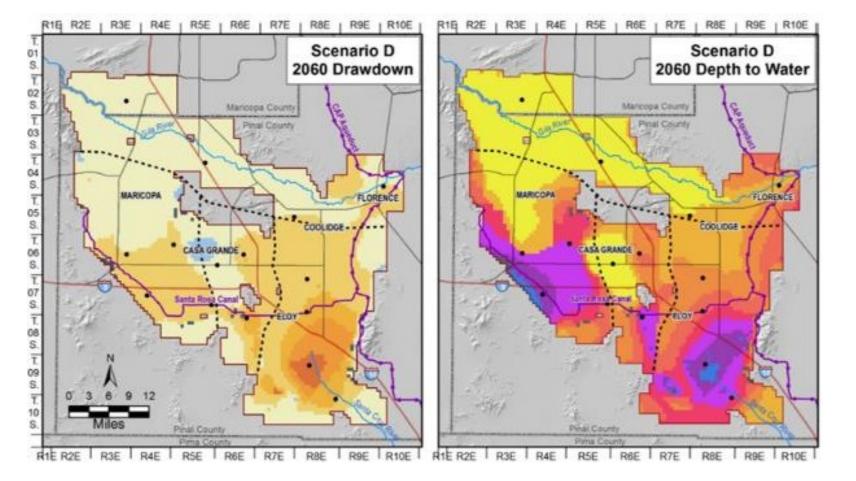
Adaptation & Mitigation Strategies

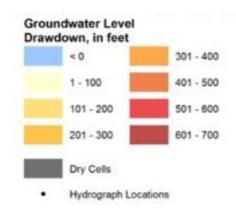
A&M Category	Strategy		
	(1) Effluent Utilization – Direct Potable Reuse (DPR)		
Municipal	(2) Effluent Utilization – Indirect Potable Reuse (IPR)		
Conservation & Reuse	(3) Green Stormwater Infrastructure (GSI) & Low Impact Development (LID)		
	(4) Reduce Municipal Sector Per Capita Water Use		
Changes to	(5) Pay for Acres to Come Out of Production		
	(6) Convert to Less Water Intensive Crops		
Agricultural Practices	(7) Convert Agricultural Lands to Developed Lands		
& Land Use	(8) Improve Irrigation Efficiency		
Supply &	(9) Build Infrastructure for Regional Aquifer Recharge		
Infrastructure Investments	(10) Build a Regional Water Treatment Plant		
	(11) Import Supplies – New Infrastructure		
	(12) Import Supplies – Existing Infrastructure		

Groundwater Modeling Results of Adaptation and Mitigation Strategies



Groundwater Model


- ADWR (2019) Pinal AMA Model
- Updated years 2016 2018
- Thorough review determined model is acceptable for regionalscale comparison of future scenarios
- Model run through 2060 to evaluate:
 - 5 Future Scenarios: vary climate, ag pumping, population growth
 - 3 Mitigation & Adaptation Strategies: muni, ag, importation



Groundwater Conditions in 2060 (Scenario D)

 Depth to Water in feet below land surface

 < 200</td>
 601 - 700

 201 - 300
 701 - 800

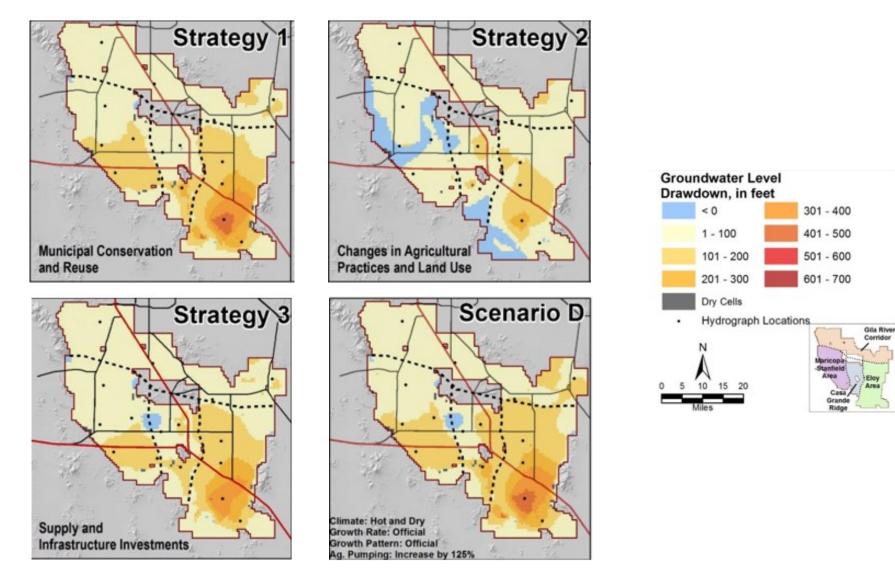
 301 - 400
 801 - 900

 401 - 500
 901 - 1000

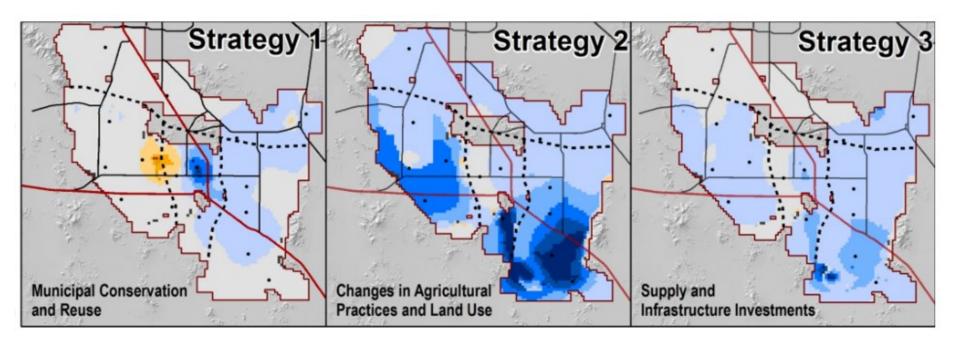
 501 - 600
 > 1000

 Dry Cells
 201 - 200

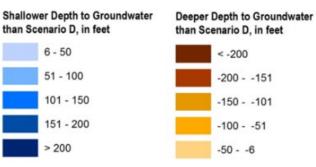
Adaptation and Mitigation Strategies

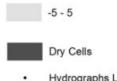

Strategy	Name	Description
Strategy #1	Municipal Conservation and Reuse	Promote additional conservation across the municipal sector and optimize the use of water supplies currently in the AMA
Strategy #2	Changes to Agricultural Practices and Land Use	Promote a persistent and vibrant agricultural sector through land use changes and improved agricultural practices
Strategy #3	Supply and Infrastructure Investments	Invest in new infrastructure to effectively move current and future water supplies into and around the AMA

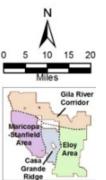
Strategies were developed in cooperation with Central Arizona Project by making modifications to Scenario D



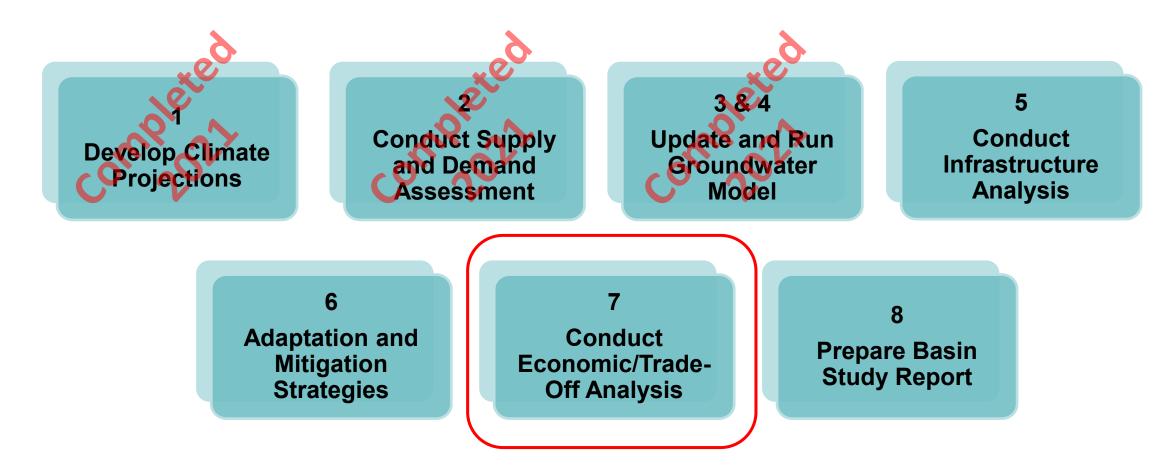
Groundwater Conditions with Mitigation (2060)




Effect of Mitigation Strategies (2060)


Difference of 2060 Depth to Groundwater

Nominal Change of Depth to Water (Mitigation ~= Scenario D)



Basin Study Tasks

Adaptation & Mitigation Strategies

A&M Category	Strategy		
	(1) Effluent Utilization – Direct Potable Reuse (DPR)		
Municipal	(2) Effluent Utilization – Indirect Potable Reuse (IPR)		
Conservation & Reuse	(3) Green Stormwater Infrastructure (GSI) & Low Impact Development (LID)		
	(4) Reduce Municipal Sector Per Capita Water Use		
Changes to	(5) Pay for Acres to Come Out of Production		
	(6) Convert to Less Water Intensive Crops		
Agricultural Practices	(7) Convert Agricultural Lands to Developed Lands		
& Land Use	(8) Improve Irrigation Efficiency		
Supply &	(9) Build Infrastructure for Regional Aquifer Recharge		
Infrastructure Investments	(10) Build a Regional Water Treatment Plant		
	(11) Import Supplies – New Infrastructure		
	(12) Import Supplies – Existing Infrastructure		

Evaluation Criteria

Criteria	Directionality
Economic	
(1) Municipal & Industrial Benefit	Benefit
(2) Agricultural Impact	Cost/Benefit
(3) Capital Cost	Cost
(4) OM&R	Cost
Environmental	
(5) Conservation and Sustainability	Benefit
(6) Surface Water Impact	Cost/Benefit
(7) Groundwater Aquifer Impact	Cost/Benefit
Social	
(8) Public and Political Perception	Cost/Benefit
(9) Barriers to Implementation	Cost
(10) Adaptation and Resilience	Benefit

Directionality	Category	Score
	High	3
Benefit	Moderate	2
	Low	1
	No Impact	0
	Low	-1
Cost	Moderate	-2
	High	-3

Criteria Importance

Criterion	Average Score	Weight Applied
(1) M&I Benefit	2.76	94%
(2) Agricultural Impact	2.35	80%
(3) Capital Cost	2.24	76%
(4) OM&R Cost	2.12	72%
(5) Conservation & Sustainability	2.53	86%
(6) Surface Water Impact	1.71	58%
(7) Groundwater Aquifer Impact	2.94	100%
(8) Public & Political Perception	1.94	66%
(9) Barriers to Implementation	2.29	78%
(10) Adaptation & Resilience	2.18	74%

Category	Score
Not Important	0
Low Importance	1
Moderate Importance	2
High Importance	3

Note: n=17.

Final Scores

Strategy	M&I Benefit	Agricultural Impact	Capital Cost	OM&R Cost	Conservation & Sustainability	Surface Water Impact	Groundwater Aquifer Impact	Public & Political Perception	Barriers to Implementation	Adaptation & Resilience
(1) Effluent Utilization – Direct Potable Reuse	2.88	0.00	-2.47	-2.18	2.82	0.41	1.65	-1.00*	-2.19	2.53
(2) Effluent Utilization – Indirect Potable Reuse	2.59	0.53	-1.82	-1.41	2.35	0.29	1.59	1.35	-1.18	2.41
(3) Green Stormwater Infrastructure and Low Impact Development	1.59	0.12	-1.88	-1.59	1.76	-0.06	0.94	1.18	-1.47	1.35
(4) Reduce Municipal Sector Per Capita Water Use	2.41	0.00	-1.18	-1.00	2.53	0.76	1.53	1.88	-0.76	2.06
(5) Pay for Acres to Come Out of Production	2.35	-2.00*	-3.00*	-0.94	2.29	1.12	2.53	-1.00	-1.59	2.18
(6) Convert to Less Water Intensive Crops	2.00	1.00*	-1.88	-1.53	2.35	0.88	2.12	0.12	-1.53	2.12
(7) Convert Agricultural Lands to Developed Lands	2.13	-1.00*	-1.38	-0.69	2.13	0.63	1.88	0.56	-1.06	1.94
(8) Improve Irrigation Efficiency	1.75	0.50*	-2.25	-1.81	2.13	0.69	1.75	1.38	-1.31	1.94
(9) Build Infrastructure for Aquifer Recharge	2.56	0.44	-2.44	-1.81	1.94	-0.19	2.25	1.56	-1.25	2.00
(10) Build a Regional Water Treatment Plant	2.63	0.50	-2.81	-2.50	2.06	0.63	1.13	0.69	-1.69	2.31
(11) Import Supplies – New Infrastructure	2.88	0.94	-3.00	-2.81	1.88	0.38	1.75	-1.00*	-2.56	2.50
(12) Import Supplies – Existing Infrastructure	2.94	0.75	-2.19	-1.94	2.00	0.38	1.25	-0.38	-1.63	2.31

Note: n=17. *Median score used instead of mean score.

Response Variability (std deviation)

Strategy	M&I Benefit	Agricultural Impact	Capital Cost	OM&R Cost	Conservation & Sustainability	Surface Water Impact	Groundwater Aquifer Impact	Public & Political Perception	Barriers to Implementation	Adaptation & Resilience	Average
(1)	0.08	0.21	0.20	0.18	0.10	0.20	0.21	0.32	0.19	0.13	0.18
(2)	0.15	0.24	0.16	0.15	0.20	0.17	0.23	0.19	0.16	0.15	0.18
(3)	0.18	0.15	0.15	0.18	0.17	0.25	0.15	0.17	0.18	0.20	0.18
(4)	0.20	0.10	0.16	0.13	0.22	0.14	0.15	0.22	0.23	0.27	0.18
(5)	0.22	0.35	0.32	0.21	0.23	0.18	0.11	0.22	0.28	0.20	0.23
(6)	0.20	0.34	0.20	0.24	0.18	0.18	0.11	0.25	0.27	0.23	0.22
(7)	0.22	0.32	0.27	0.18	0.20	0.16	0.18	0.26	0.25	0.14	0.22
(8)	0.19	0.34	0.17	0.19	0.13	0.16	0.18	0.23	0.22	0.21	0.20
(9)	0.16	0.22	0.16	0.16	0.25	0.16	0.18	0.21	0.25	0.22	0.20
(10)	0.15	0.17	0.10	0.18	0.25	0.23	0.25	0.28	0.24	0.15	0.20
(11)	0.09	0.25	0.00	0.10	0.27	0.25	0.24	0.33	0.16	0.18	0.19
(12)	0.06	0.25	0.16	0.21	0.26	0.19	0.20	0.27	0.20	0.18	0.20
Average	0.16	0.25	0.17	0.18	0.20	0.19	0.18	0.25	0.22	0.19	
	Key										

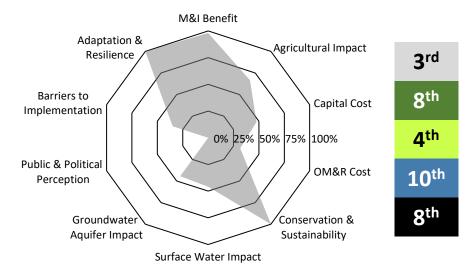
Low Variability

Moderate Variability

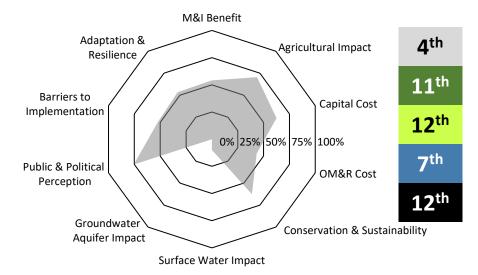
High Variability

Note: n=17.

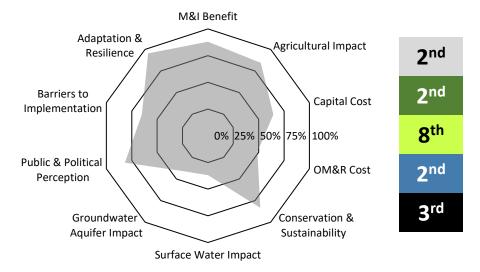
Weighted vs Unweighted Scores

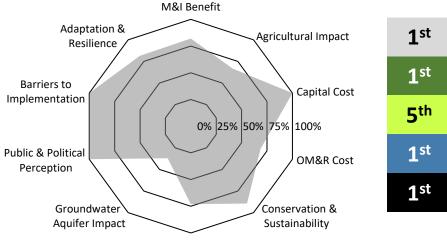

Strategy	Unweighted Rank	Weighted Rank
(1) Effluent Utilization – Direct Potable Reuse	10 th	8 th
(2) Effluent Utilization – Indirect Potable Reuse	3rd	3rd
(3) Green Stormwater Infrastructure and Low Impact Development	12 th	12 th
(4) Reduce Municipal Sector Per Capita Water Use	1 st	1 st
(5) Pay for Acres to Come Out of Production	7 th	7 th
(6) Convert to Less Water Intensive Crops	4 th	2 nd
(7) Convert Agricultural Lands to Developed Lands	2 nd	4 th
(8) Improve Irrigation Efficiency	5 th	6 th
(9) Build Infrastructure for Aquifer Recharge	6 th	5 th
(10) Build a Regional Water Treatment Plant	8 th	10 th
(11) Import Supplies – New Infrastructure	11 th	11 th
(12) Import Supplies – Existing Infrastructure	9 th	9 th

Strategy Rankings (weighted scores)

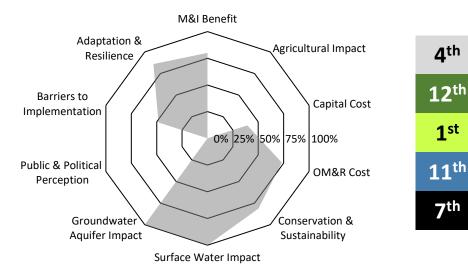

Strategy	A&M Category	Economic Criteria	Environmental Criteria	Social Criteria	Overall Rank
(1) Effluent Utilization – Direct Potable Reuse	3rd	8 th	4 th	10 th	8 th
(2) Effluent Utilization – Indirect Potable Reuse	2 nd	2 nd	8 th	2 nd	3rd
(3) Green Stormwater Infrastructure and Low Impact Development	4 th	11 th	12 th	7 th	12 th
(4) Reduce Municipal Sector Per Capita Water Use	1 st	1 st	5 th	1 st	1 st
(5) Pay for Acres to Come Out of Production	4 th	12 th	1 st	11 th	7 th
(6) Convert to Less Water Intensive Crops	1 st	5 th	2 nd	8 th	2 nd
(7) Convert Agricultural Lands to Developed Lands	2 nd	4 th	3 rd	5 th	4 th
(8) Improve Irrigation Efficiency	3rd	10 th	6 th	4 th	6 th
(9) Build Infrastructure for Aquifer Recharge	1 st	7 th	7 th	3 rd	5 th
(10) Build a Regional Water Treatment Plant	3 rd	9 th	10 th	6 th	10 th
(11) Import Supplies – New Infrastructure	4 th	6 th	9 th	12 th	11 th
(12) Import Supplies – Existing Infrastructure	2 nd	3rd	11 th	9 th	9 th

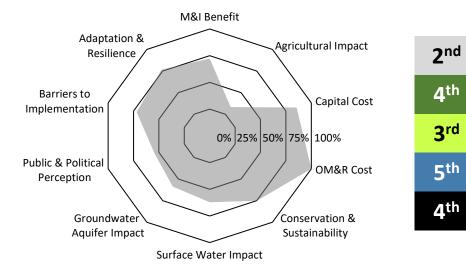
Municipal Conservation and Reuse


Effluent Utilization - Direct Potable Reuse


Green Stormwater Infrastructure & Low Impact Development

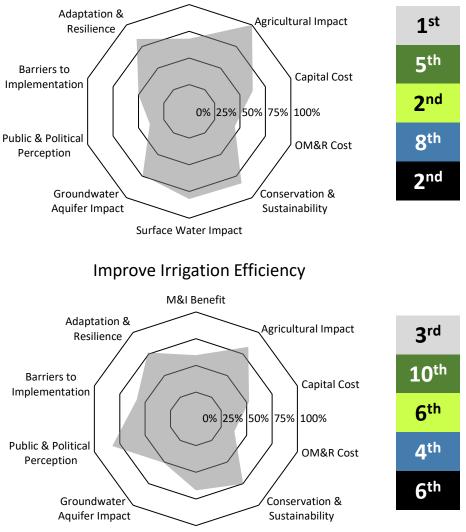
Effluent Utilization – Indirect Potable Reuse


Reduce Municipal Sector Per Capita Water Use


Surface Water Impact

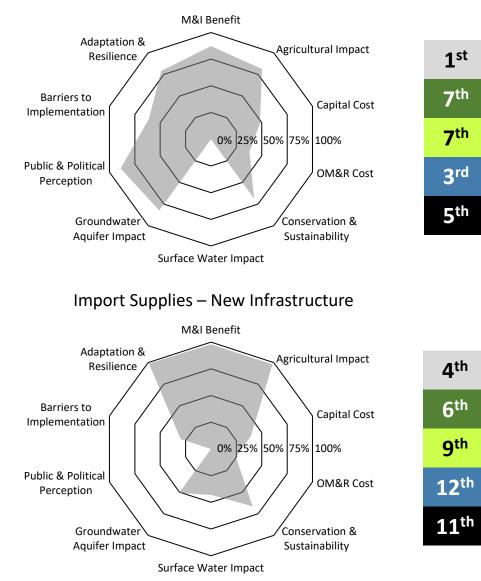
Changes to Agricultural Practices and Land Use

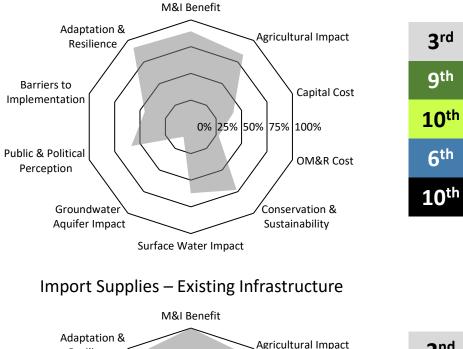
Pay for Acres to Come Out of Production



Convert Agricultural Lands to Developed Lands

Convert to Less Water Intensive Crops


M&I Benefit


Surface Water Impact

Supply and Infrastructure Investments

Build Infrastructure for Aquifer Recharge

Build a Regional Water Treatment Plant

0% 25% 50% 75% 100%

Conservation &

Sustainability

Surface Water Impact

Resilience

Groundwater

Aquifer Impact

Barriers to

Implementation

Public & Political

Perception

Recap of Results

Strategy	A&M Category	Economic Criteria	Environmental Criteria	Social Criteria	Overall Rank
(1) Effluent Utilization – Direct Potable Reuse	3rd	8 th	4 th	10 th	8 th
(2) Effluent Utilization – Indirect Potable Reuse	2 nd	2 nd	8 th	2 nd	3rd
(3) Green Stormwater Infrastructure and Low Impact Development	4 th	11 th	12 th	7 th	12 th
(4) Reduce Municipal Sector Per Capita Water Use	1 st	1 st	5 th	1 st	1 st
(5) Pay for Acres to Come Out of Production	4 th	12 th	1 st	11 th	7 th
(6) Convert to Less Water Intensive Crops	1 st	5 th	2 nd	8 th	2 nd
(7) Convert Agricultural Lands to Developed Lands	2 nd	4 th	3 rd	5 th	4 th
(8) Improve Irrigation Efficiency	3 rd	10 th	6 th	4 th	6 th
(9) Build Infrastructure for Aquifer Recharge	1 st	7 th	7 th	3rd	5 th
(10) Build a Regional Water Treatment Plant	3 rd	9 th	10 th	6 th	10 th
(11) Import Supplies – New Infrastructure	4 th	6 th	9 th	12 th	11 th
(12) Import Supplies – Existing Infrastructure	2 nd	3rd	11 th	9 th	9 th

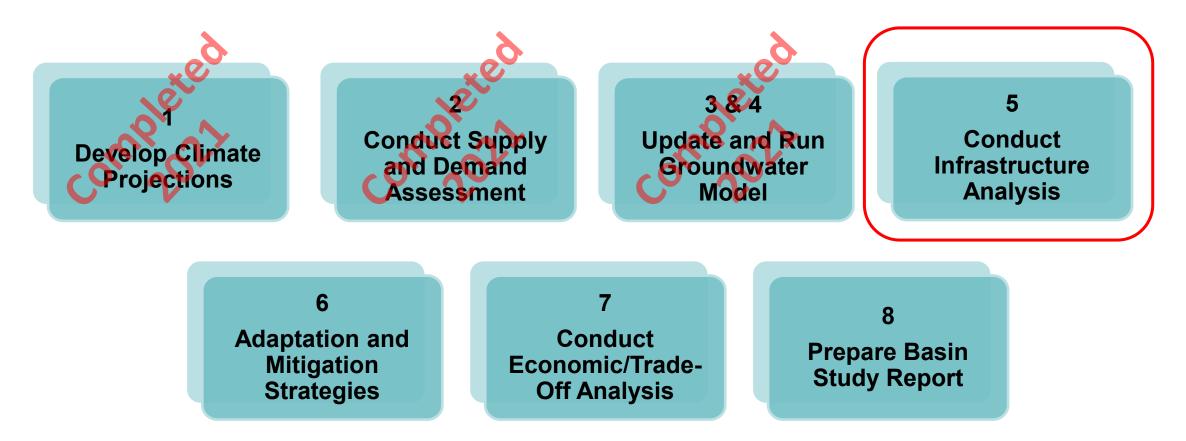
Conclusion and Future Opportunities

Screened strategies across economic, environmental, and social effects

Identified key strengths and weaknesses

Used simple low-high *qualitative measurement*

- Pro: Evaluated a *wide range* of strategies and impacts
- Con: Low *accuracy* and high *uncertainty*


Multiple conflicting objectives (*trade-offs*)

- No strategy performs the *"best"* along every criterion
 - Top strategy overall (4) only performs the best along 3 of 10 criteria
 - Strategy (11) also performs near the best along **3** of **10** criteria, yet ranks 11th overall

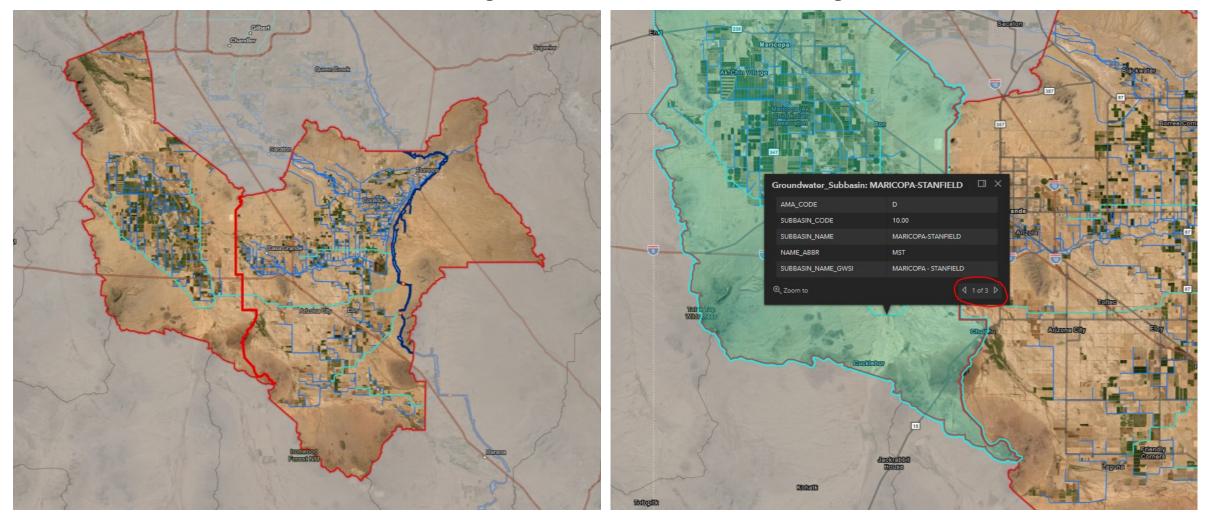
Future Opportunities

• This work helps *inform* and *prioritize* future work

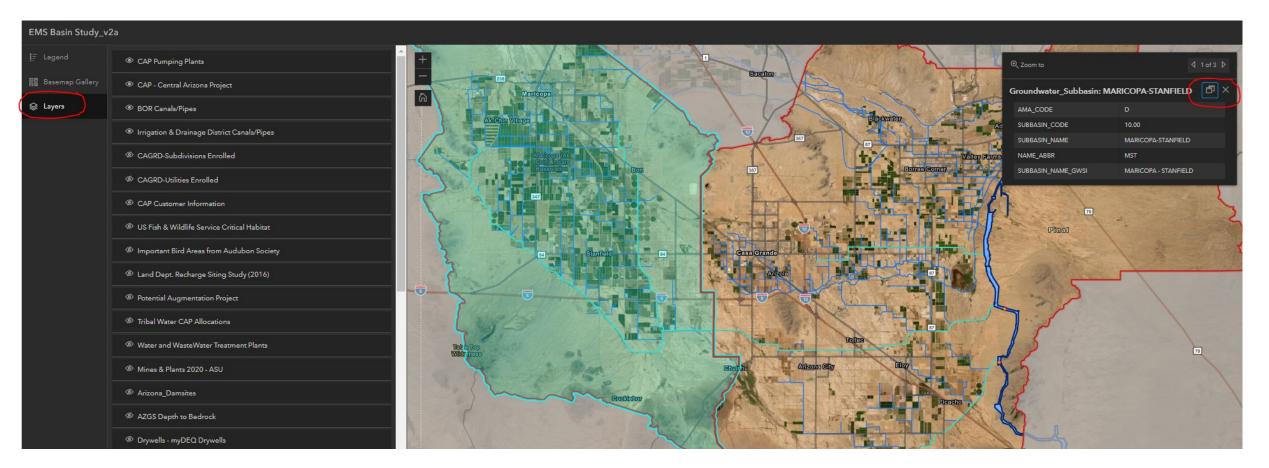
Basin Study Tasks

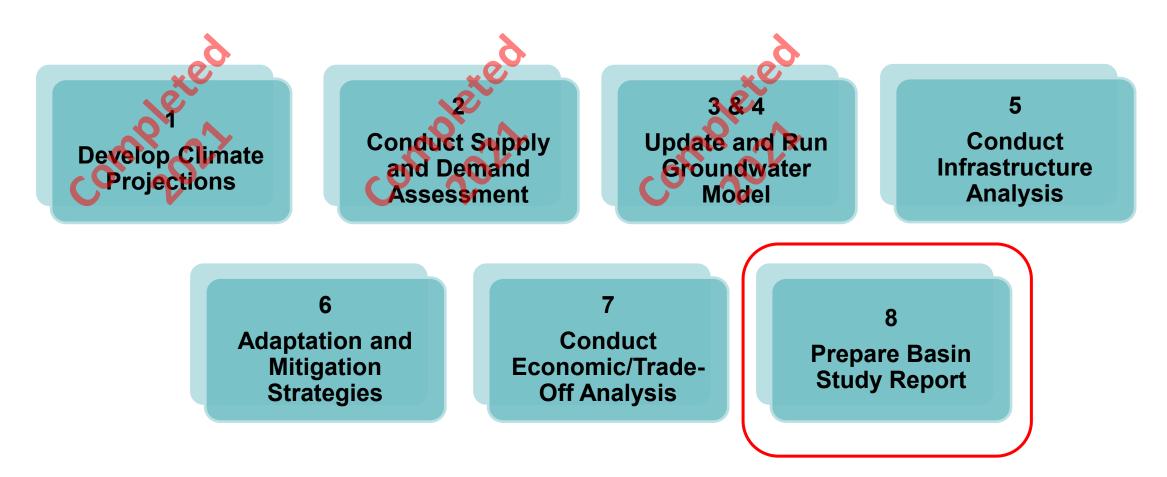
Infrastructure Analysis - Inventory

Goal: Document existing infrastructure as well as legal, regulatory, and environmental characteristics that could impact future water use and development in the EMS basin.


Approach: Developed infrastructure working group. Met regularly to discuss the GIS layers and data sources, improve user experience, and group layers into easy to search categories.

Results: Interactive GIS tool with approx. 50 layers of data that can be used to help determine water solutions for the future.


Infrastructure Analysis – Inventory (continued)


Infrastructure Analysis – Inventory (continued)

Find link in the chat box.

Basin Study Tasks

Basin Study Report

- Initial Draft
- Team Review
- Bureau of Reclamation Policy Review
- Publish the Report

Updated Schedule

	Description		Ye	ar 1		Year 2				Year 3				Year 4					End of
Task		Starts 11/12/2018			Starts 11/12/2019			Starts 11/12/2020				Starts 11/12/2021				Study			
		Nov 2018	Feb 2019	May 2019	Aug 2019	Nov 2019	Feb 2020	May 2020	Aug 2020	Nov 2021	Feb 2021	May 2021	Aug 2021	Nov 2021	Feb 2022	5/1/	/2022	8/1/2022	May 12, 2023
5.1	Climate Change Analysis																		
5.2	Supply and Demand Assessment																		
5.3 & 5.4	Groundwater Model (update for planning)																		
5.5	Infrastructure Analysis																		
5.6	Adaptation & Mitigation Strategies														1				
5.7	Economic / Trade-Off Analysis																		
5.8	Basin Study Report																		
5.9 -5.12	Project Management / Admin																		

On-going Tasks

Budget Update

Original Budget (\$1,360,000)

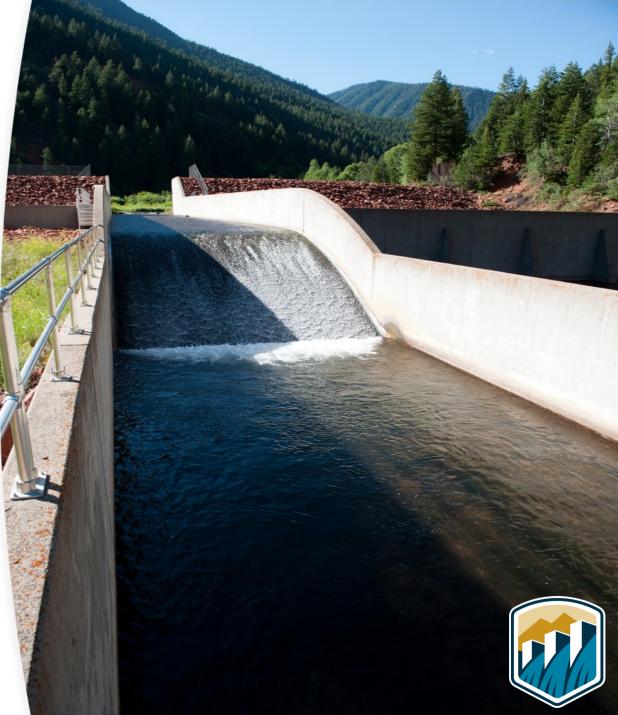
Modification (1,860,000)

Spent to date Labor Reports Total

<u>Reclamation</u> \$680,000	<u>Pinal Partnership</u> \$680,000
\$930,000	\$930,000
\$780,000	\$500,000

\$780,000

\$500,000 <u>\$873,000</u> \$1,373,000


U.S. Bureau of Reclamation WaterSMART Program

Lisa Rivera, Natural Resource Specialist Phoenix Area Office May 20, 2022

WaterSMART Program

Sustain and Manage America's Resources for Tomorrow

- Working to achieve a sustainable water strategy to meet the Nation's water needs
- Managed out of Reclamation's
 Denver Office
- Relies on collaboration with stakeholders to develop local solutions to water supply issues

WaterSMART Program Framework

Provides a framework for Interior to support water supply reliability for multiple water users

Build a Foundation Through WaterSMART

Planning

Cooperative Watershed Management Program - Phase I Drought Contingency Planning Water Marketing Strategy Grants Water Conservation Field Services Title XVI Projects

Science and Tools

Applied Science Grants Drought Resiliency Projects Basin Studies Water Management Options Pilots

On-the-Ground Projects

Drought Resiliency Projects Small-Scale Water Efficiency Projects Water & Energy Efficiency Grants Environmental Water Resources Projects Title XVI Projects

WaterSMART Program Basics

Most WaterSMART activities are grant programs

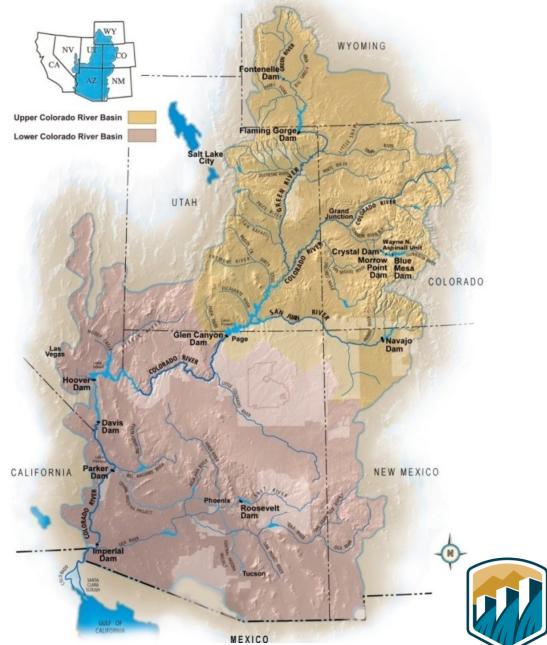
Generally, a 50% non-Federal cost share is required for grants

Applicants include entities such as states, tribes, cities, water districts, irrigation districts, flood control districts, non-profits*, and watershed groups* within the 17 western states

Funding is allocated through annual competitive processes

Water Management Options Pilots

Basin Study Program


Objective: Technical efforts that build upon *completed* Basin Studies, such as additional, updated, or expanded analysis to further develop strategies identified in a Basin Study.

Entities submit a Letter of Interest to Reclamation.

Funding

- 50% non-Federal cost share required
- These pilots *are not* grants or financial assistance
- Reclamation funding must be used for Reclamation staff time or contractors

Colorado River Basin

Water Management Options Pilots

Previously Selected Pilots

- Sacramento Regional Water Bank
- Exploration of Water Savings from Irrigation Management Tools in the Lower Colorado River Basin
- Santa Fe Integrated Water Management System Model Development for Resource Optimization
- Santa Ana Watershed-Wide Water Budget Decision Support Tool
- Evaluating Low Impact Development and Surface Water Groundwater Interaction in the Los Angeles Basin
- Toolbox for Sequencing Voluntary On-Farm Water Conservation Projects and Accounting for Water Savings in the Deschutes Basin
- East Fork Irrigation District Sediment Management Plan

WaterSMART Grants

• Water & Energy Efficiency Grants (WEEG)

Objective: Support projects that conserve and use water more efficiently, implement or increase renewable energy production, and mitigate risk of future water conflict. (*Quantifiable* water or energy savings.)

Small-Scale Water Efficiency Projects (SWEP)
 Objective: Small-scale on-the-ground projects (identified through previous planning efforts) that seek to conserve, better manage, or make more efficient use of water supplies.

Drought Response Program

• Drought Contingency Planning

Objective: Development of comprehensive drought plans.

• Drought Resiliency Projects

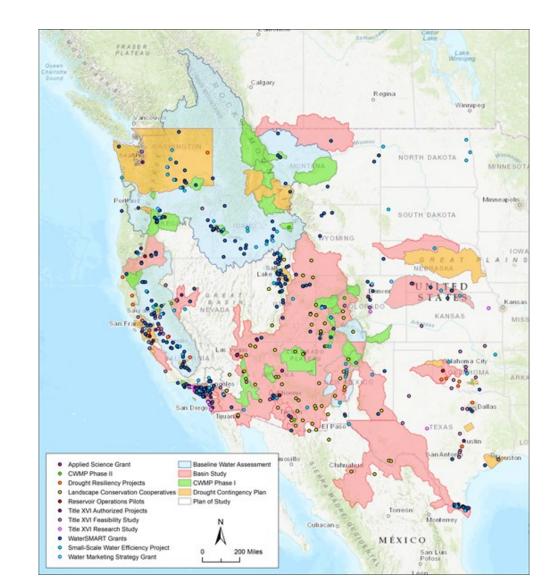
Objective: On-the-ground projects and modeling tools that increase water supply reliability or improve water management, building long-term resilience to drought.

Water Conservation Field Services Program (WCFSP)

5 sub-activities

- Water Management Planning
- System Optimization Review (SOR)
- Designing Water Management Improvements
- Demonstrating Conservation Project Technologies
- Technical Assistance

Note: Locally, the WCFSP program is managed by the Lower Colorado Basin regional and area offices.



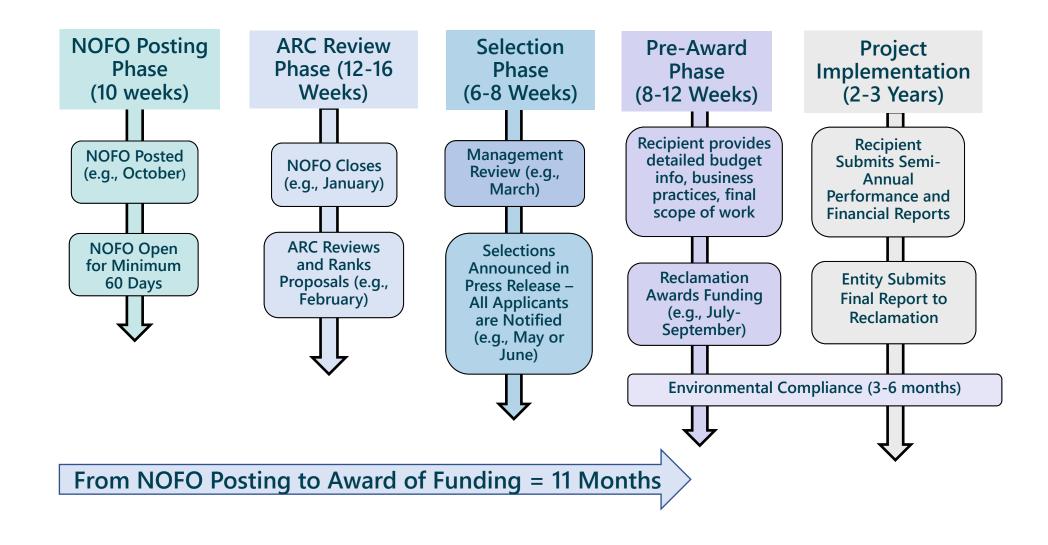
WaterSMART Data Visualization Tool

- Interactive website with WaterSMART Program information, including:
 - All funded projects
 - Interactive maps
 - Featured project tours

www.usbr.gov/watersmart/

How to Find Funding Opportunities

- WaterSMART funding announcements are posted on the <u>Grants.gov</u> website.
- More information also available on Reclamation's WaterSMART website: <u>usbr.gov/watersmart/</u>
- Send an email to watersmart@usbr.gov with your name and email address to receive WaterSMART Program updates. Or, complete the form on our website.
- Notice of Funding Opportunity (NOFO) open or expected in coming months for:
 - Drought Resiliency Projects (closes June 15, 2022)
 - Water and Energy Efficiency Grants (WEEG) (closes July 28, 2022)
 - Environmental Water Resources Projects (expected to open in June 2022)
 - Water Conservation Field Services Program (WCFSP) (expected to open in Sept 2022)


WaterSMART Program Web Links

Note: Successful proposals for each program are available on the website

Basin Study Program Reservoir C			dies - <u>https://www.usbr.gov/watersmart/bsp/index.html</u> Operations - <u>https://www.usbr.gov/watersmart/pilots/index.html</u> cience - <u>https://www.usbr.gov/watersmart/appliedscience/index.html</u>						
Title XVI Program		<u>:ps://www.usbr</u>	r.gov/watersmart/title/index.html						
WaterSMART Grants	Small-Sc	ale Water Effic	tiency Grants (WEEG) - <u>https://www.usbr.gov/watersmart/weeg/index.html</u> tiency Grants (SWEP) - <u>https://www.usbr.gov/watersmart/swep/index.html</u> egy Grants - <u>https://www.usbr.gov/watersmart/watermarketing/index.html</u>						
Water Conservat Program (WCFSI		d Services	https://www.usbr.gov/waterconservation/						
Drought Response Program http			os://www.usbr.gov/drought/						
Cooperative Watershed Management Program (CWMP)			https://www.usbr.gov/watersmart/cwmp/index.html						

WaterSMART Selection Process Sample schedule

Environmental and Cultural Resource Compliance

- All funded projects must comply with the Federal Environmental Policy Act (NEPA) and other Federal environmental and cultural resource laws.
- Contact the local Reclamation office to discuss the potential compliance requirements and associated costs.
 - Reclamation assists with covering some or all environmental compliance costs.
- This compliance must occur before any ground disturbing activities can take place, including installation of meters and similar devices.
- Expect compliance process typically takes 3 to 6 months.

Tips for Applicants

Crafting grant proposals and submitting applications

- <u>Grants.gov</u> website has tutorial videos on how to register with and use the system. Register well in advance.
 - System for Award Management (SAM) registration must be renewed annually.
- Cost share must be *non-Federal funding*.
 - Could apply for state funding for the same project.
 - State funding can count as your cost share portion.
 - Water Infrastructure Finance Authority (WIFA) and State Revolving Funds (SRF) loans can count as cost share, *only if there is no loan forgiveness*.
- Project costs are reimbursed. (Not a lump sum grant.)
- Able to apply for multiple grants. If a project is selected for multiple awards, we'll award one opportunity providing the most benefit.
- For large projects, consider doing it in phases and applying for funding in sequential years.

Lisa Rivera 623-773-6274 Irivera@usbr.gov

usbr.gov/watersmart/

Send an email to watersmart@usbr.gov with your name and email address for WaterSMART Program updates.

— BUREAU OF — RECLAMATION

Questions / Discussion

Upcoming Meetings

Project Meetings

tbd as needed

Final Stakeholder Meeting Spring 2023

Closing Remarks

Ron Fleming, President and CEO, Global Water Resources and Pinal Partnership Board of Directors

For more information:

http://pinalpartnership.com/ems-basin-study

Valerie Swick vswick@usbr.gov

Jake Lenderking Jake.Lenderking@gwresources.com

PINAL COUNTY

MeritageHomes 1

Inthem at Merrill Ranch

Taylor Morrison

CDHOME

